Каталог организаций

Холодная сварка

Холодная сварка металлов 

Для осуществления холодной сварки необходимо удалить со свариваемых поверхностей окислы и загрязнения и сблизить соединяемые поверхности на расстояние параметра кристаллической решетки; на практике создают значительные пластические деформации.

Холодной сваркой можно получать соединения встык, внахлестку и втавр. Перед сваркой поверхности, подлежащие сварке, очищают от загрязнений обезжириванием, обработкой вращающейся проволочной щеткой, шабрением. При сварке встык проволок только обрезают торцы.

Листы толщиной 0,2—15 мм сваривают внахлестку путем вдавливания в толщу металла с одной или с двух сторон пуансонов (рис. 3). Соединения выполняют в виде отдельных точек или непрерывного шва. Ширину или диаметр пуансона выбирают в зависимости от толщины свариваемого материала.

Таблица 3. Зависимость деформаций от свойств металла
 

Основной параметр, определяющий процесс холодной сварки, — величина деформации металла в месте соединения, которая зависит от свойств металла (табл. 3), его толщины, типа соединения и способов подготовки поверхностей.

Если на металл нанести твердые пленки электролитическим способом, например на медь пленку твердого никеля, или принять меры к предотвращению загрязнении, выполняя сварку сразу же после окончания обработки механической щеткой, то в этих случаях сварка происходит при значительно меньших деформациях.

Зависимость прочности точечных соединений от величины деформаций для различных металлов представлена на рис. 4. Снижение прочности точки после достижения определенного максимума объясняется уменьшением толщины металла в месте сварки, вследствие чего происходит разрушение с вырывом точки, а не срез, как это происходило до максимума.

Степень необходимой деформации при сварке разнородных металлов определяется свойствами того из свариваемых металлов, при сварке которого требуется меньшая деформация.

Этим пользуются при сварке малопластичных металлов, применяя прокладки из пластичных металлов.

 

Рис. 3. Схемы холодной сварки внахлестку:

 

а - вдавливанием одного пуансона; б — вдавливанием двух пуансонов; в — вдавливанием пуансонов с заплечиками; г - вдавливанием пуансонов с предварительным зажатием изделия.

 

Рис. 4. Зависимость прочности точечных соединений от величины деформации:
1 — наклепанный алюминий; 2 — медь электролитическая; 3 — тантал; 4 — мягкий алюминий; 5 — олово.

Герметичное шовное соединение может быть достигнуто вдавливанием пуансона по всей длине шва или путем прокатывания ролика (рис. 5).


В конце деформирования давление пуансона должно составлять для отожженного алюминия 30—60 кгс/мм' (290—588 МН/м2), для меди 200 кгс/мм2 (1960 МН/м2).

Стержни, полосы, профили и провода соединяют встык путем сдавливания свариваемых элементов друг с другом. Встык можно сваривать пластичные металлы: медь, алюминий, свинец, олово, кадмий, никель, титан, алюминиевые сплавы.

Прочность соединения зависит от величины пластической деформации в месте его образования. Величина пла­стической деформации зависит от длины выпущенного из зажимов конца свариваемого стержня, который затем пол­ностью выдавливается из зоны стыка в процессе сварки.

 

Рис. 5. Схема холодной шовной сварки с односторонним (а) и двусторонним деформированием (б).

Длина вылета стержня при сварке составляет для алюминия (1-1,2) d, для меди (1,25-1,5) d, где d — диаметр стержня. При сварке алюминия с медью вылет медного стержня должен быть на 30—40% больше, чем алюминиевого. Давление при холодной сварке встык составляет для алюминия 70—80 кгс/мм2 (686—784 МН/м2), меди 200—250 кгс/мм2 (1960—2450 МН/м2), меди с алюминием 150-200 кгс/мм2 (1470—1960 МН/м2). Усилие зажатия образцов в зажимах с насечкой должно превышать усилие осадки при сварке алюминия более чем на 50%, а при сварке меди — более чем на 80%.

Соединения, полученные путем одностороннего и двустороннего деформирования пуансонами постоянного сечения, как показывают эксперименты, обладают относительно низкой прочностью и при испытании на растяжение-срез разрушаются на границе вмятины с вырывом сварной точки. Соединения, полученные путем вдавливания пуансонами с заплечиками или с предварительным зажатием детали, обладают большей прочностью (табл, 4). Более высокая прочность объясняется тем, что соединение в этом случае образуется не только под поверхностью пуансонов, но и в прилегающей кольцевой зоне.

С увеличением площади соединения разрушающая нагрузка растет, однако прочность при этом уменьшается. Прочность многорядного соединения обычно составляет до 80% суммарной прочности отдельных точек.

Таблица 4. Зависимость прочности соединений из алюминия от схемы сварки.

Прочность стыковых соединений обычно выше прочности основного металла. Это объясняется тем, что в местах соединения металл упрочняется вследствие наклепа. Механические свойства соединений можно изменять с помощью термообработки. После термообработки прочность стыкового соединения равна прочности отожженного металла.

Скорость приложения давления в процессе сварки практически не влияет на прочность соединения, поэтому производительность холодной сварки может быть высокой.

Для холодной сварки внахлестку могут быть использованы любые прессы. Для одновременной сварки нескольких точек требуются прессы усилием 50—100 тс (490— 980 кН). Для одноточечной сварки широко используют гидропрессы РПГ-7 и гидропрессы с педальным приводом, создающие усилие до 12 тс (117,6 кН).

Для точечной сварки алюминиевых шин толщиной 5+5 мм в монтажных условиях предназначена установка УГХС-5, разработанная во ВНИИЭСО. Для армирования выводов алюминиевых обмоток, шин и других деталей медными накладками, используют машину МХСА-50. Полуавтомат МХСК-4 предназначен для герметичной сварки алюминиевых корпусов конденсаторов с крышкой; производительность сварки 750 изделий в час. Машина МСХС-60 предназначена для стыковой сварки алюминиевых стержней сечением до 700 мм2, медных—до 250 мм2 и медных с алюминиевыми — до 300 мм2. Максимальное осадочное усилие машины 60 тс (588 кН), макси­мальное усилие зажатия 90 тс (882 кН).

Машину МСХС-30 (рис. 6) применяют для сварки встык медных троллейных проводов сечением до 100 мм2. Машина может быть использована для сварки алюминия, а также меди с алюминием сечением до 200 мм2. Она потребляет 1 кВт электроэнергии, развивает усилие осадки до 30 тс (294 кН) и позволяет сваривать до 300 стыков в смену. Для стыковой сварки алюминиевых одножильных проводов сечением до 10 мм2 применяют ручные клещи (рис. 7).

Рис. 6. Машина для холодной сварки МСХС-30. Рис. 7. Ручные клещи для холодной стыковой сварки проводов типа КС-б.

Холодную сварку можно осуществлять путем сдавливания соединяемых изделий с одновременным их тангенциальным относительным смещением. Этот способ сварки получил название сварки сдвигом.

При сварке сдвигом механизм образования сварного соединения иной.

Ранее было показано, что когда приложена нормальная нагрузка, то деформируются только неровности, следовательно, площадь контакта, свободная от загрязнений и окисных пленок, мала. При приложении тангенциальной силы начинается перемещение поверхностей, в процессе чего окисные пленки и загрязнения сдираются и образуются отдельные мостики контакта. Тангенциальное смещение соединяемых изделий дает возможность получить сравнительно большие площади очищенных от пленок поверхностей при небольшом растекании каждой из них. Наличие тангенциальной силы уменьшает сопротивление металла пластическим деформациям и при данной нормаль- поп силе позволяет получить большую площадь контакта. Это ведет к тому, что при точечной сварке сдвигом схватывание происходит при малых деформациях и усилиях.

При сварке сдвигом разноименных металлов прочное соединение возникнет только у металлов с близкими механическими свойствами, например наклепанного алюминия и отожженной меди и некоторых других.

При холодной сварке сдвигом основные параметры — величина давления и величина сдвига. Величина давления должна быть такой, чтобы возможно было относитель­ное перемещение поверхностей. Величина сдвига не зависит от размеров изделий и определяется нормальным давлением и геометрией трущихся поверхностей. Достаточная площадь сцепления поверхностен, обработанная напильником, возникнет после сдвига на 5—7 мм.

При сварке сдвигом прочность соединений на срез может быть высокой при условии достаточной величины нахлестки, однако сопротивление отрыву всегда низкое.

Холодная сварка применяется в промышленности для заварки алюминиевой оболочки кабелей, при сварке корпусов полупроводниковых приборов, при изготовлении бытовых приборов из алюминия — чайников, подставок, различного рода каркасов; нашла применение в электро­монтажном производстве для сварки проводов и шин внахлестку и встык при монтаже электролизных ванн, сетей связи и троллейных проводов и электропроводки в домах.

Холодная сварка найдет несравненно более широкое применение.

Также по теме:

Высокочастотная сварка. Сварка токами высокой частоты.

Пайка. Общее описание пайки металлов и сплавов.